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1 Introduction

As is known discrete processes are less studied comparatively to the continuous ones. Despite
the fact that many physical phenomena, for example, wave propagation has both continuous and
discrete character (Dirac, 1932; Misha, 1978) and in classical mathematics the arithmetic pro-
gression and Fibonacci number (Vorobyev, 1984; Gelfond, 1967) are mainly known. The adjoint
method is an elegant approach for the computation of the gradient of a cost function to identify
a set of parameters. An additional set of differential equations has to be solved to compute the
adjoint variables, which are further used for the gradient computation. However, the accuracy
of the numerical solution of the adjoint differential equation has a great impact on the gradient.
Hence, an alternative approach is the discrete adjoint method, where the adjoint differential
equations are replaced by algebraic equations (Laub et al., 2018). Discrete adjouint problems
are also met in investigation of the turbulent flow problems (Yang et al., 2019; He et al., 2018).
The known results in the study of the ordinary linear differential equation for the difference
equations are given for example in (Izadi et al., 2009). The results of some our investigations in
this direction were given in (Izadi et al., 2009; Aliyev et al., 2020).

Here we construct adjoint boundary value problems to the boundary value problem posed for
the ordinary linear differential equation of the second order with discrete additive derivatives.
It would useful if we first consider the work (Hassani & Aliyev, 2008).

2 Statement of the problem
Let’s consider the following boundary-value problem:
lyn= v +ayl) +byn = fo, 0<n <N -2, (1)
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yn +dyo =0,

yn—1+py1 = 0. 2)

where a, b, « and 8 are given real numbers; f,, is the given sequence; ¥, is the sought sequence.
We define the discrete additive derivative by the relation
yﬁl) = Yn+1 — Yn, (3)

and the discrete additive integral by the relation
n n—1
| =3 s (4)
0 k =0
Multiplying the left side ly,, of equation (1) by
12, = CoZ0) + C1Z) + CoZy, (5)
where Cs, C| and Cy are arbitrary constants, we get
Oz 4

n n

lynlZn = Coy ) Z) + 1y 20 4 Coy) Z,, + aCly

+aC1y$ 20 + aCoyl) Z,, + bCoyn ZL) + bC1yn Z8) + bCoyn Zn. (6)

n

It is known that

007" = Y07 070 070,
and )

W02 =020 + 070 + 0200
Then

v 28 = (ynZn) ) =y Zo — yn Z{),
y$20 = W 2)" = < 20— 20 = (v 22) " -
) Zo = (yn Zn) + 9 Zn + yn Z(),
v 200 = (yn 2 =40 2) -y 2 =
= WnZ) = (YnZn) ) + ynZ) — yn 28",
A (A N A VAR
= w020~ (102)" + 2+ 20— ) 2~ a2
~nZ) O + (n Z0)) =y Zyy — yn 20 + 9 2 =
= w020)" — (192.)" — 2O + 202 + 4 2
ng)Zn — ZynZ,(Ll) + ynZg/).
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Considering the obtained relations in (6), we get
lynl Zn = Cays) Z0)) — Co(yl) Z,)O) — Cayn ZS) ) + 205 (yn Z0) )+
+Csyt ) Z — 200y Zy — 2C0yn 25 + CoynZ3, ) + C1(yt) Z0) )~
—Cr(ynZn)) = Cryly ) Zo + C1yY) Zy + Cryn Z8) + Coyl ) 2+
+aCo(ynZE ) — aCs(ynZn)) + aCoyl) Zy, + aCoyn Z8) — aCoynz8 )+
+aCh (ynZn)) — aCiy) Zy — aCryn Z8) + aCoyl) Zyy + bCoyn 28+
+bC1yn 28 + bCoynZn = Ca(y) 25 + (C1 — Ca) (9 Z,) )+
+(aCy — Co)(ynZ8 ) + (205 — C — aCy + aCh) (yn Zn) )+ (7)
+(Cy = Cy+ Co) S Zy + (Cy — 205 + aCs — aCh + aCo) v Zn+
+(Co — aCy + bCs) yn 24, ) + (C — 2C5 + aCy — aCy + bCy) yn 23, + bCoynZy =
= O3(yaZn)") + (C1 = 2C2) (4 Z)") + (aC — 2Cs) (yn Z5)) )+
+(2C2 — C1 = aCy + aC1) (ynZn)) + (C2 — C1 + Co) ) Zot
H(Cy — 205 + aCs — aCy + aCo)yl) Zn + (Co — aCy + bCo)yn Z5 )+

H(Cy — 205 + aCs — aCy + bCy )ynZS) + bCoyn Zn.

We choose arbitrary constants Cy,Cy and Cy to provide the absence of the terms yg/)Zn
and yé)Zn in the right hand side of (7), i.e.

02_01"1'00:(]’ (8)
C1—2Cy +aCy —aCi +aCy = 0.

Then from (8) we get
ChL=Cy+Cy

and
Co+Cy—2C5 +aCy —aCy — aCsy + aCy = 0.

Thus, we have
Co=Cp=1, Cy =2 (9)

Then (7) turns to
WalZy = (420)") + (a = 2)(wa Z0)) )+

talynZn)) + (1 - a+b) ya 28+ (10)

+(2b — )y Z5) + bynZn

Summing up the resulting expression from zero to N — 2, we get

N—1
/ WnlZy = (yn—1Zn-1)") = (y02Z0)+
0
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+(a - 2) [3/N—1ZJ(V),1 — Yo Zé )] + a [yvn—1Zn-1 — Yo Zo] +

N—-1
/ v [(1—a40) 200 + (2 —a) 20 +b 2] (11)
0

Thus, instead of the Lagrange’s formula, known from the theory of linear operators (Hassani
& Aliyev, 2008), we get formula (11), i.e. the conjugate to (1) equation is given by

V'Zy=1—a+b)Z, +2b—a) 2 +bZ,=f,, 0<n<N-2. (12)
Now we formulate the boundary condition for the adjoint problem.
For this purpose first we separate the non-integrant terms (i.e. linear expressions) from the
Lagrange’s analogue formula
YNZN —YN-1ZN-1 — 121 +YoZo + (a = 2) [yn—1 (ZN — ZN-1) —
—y0(Z1 — Zo )]+ a(yn—1Zn-1 — yoZo) =
=yYnIN —yYn-1[Zn-1—(a—2)(ZN — ZN-1) —a Zn-1] — (13)

—y1Z1+ Y020 — (a —2)(Z1 — Zp) — a Zy] =

=ynZn —Yno|—(a—2)Zn —Zna] —nZi +yo (2 —a)Z1 — Zy) .

Now, in boundary conditions (2) we define yn , yy_; and substitute them into (13)
YNZN —yN-1[—(a=2)Zn —ZN] =121+ wl(2—a) Z1 — Zp =

=—ayoZn + By (a—2)Zn —ZNn_1] —

14
~nZ1+yl2—a)Z1— Zol = -y [Z1+B(a—2)Zn+ B ZN-1] + -
+y9((2—a)Z1 — Zy — a Zy].

Finally, we obtain the following boundary condition to the adjoint problem.
{ﬁ(a—2) I+ 521+ 21 =0, 5)
aZn+ (a—2)Z1+ Zy = 0.

Thus, we get the following statement.

Theorem 1. Let us assume that a, b, and B are given real constants, f, is a given sequence.
Then adjoint to (1)-(2) problem is given by formula (12) and (15).

Now let us find the fundamental solution of equation (12). The partial solution of the
corresponding homogeneous equation

1—a+b0)Z) +2b —a)2z) + b2, =0, (16)

we seek in the form

Zp = (9 +1)". (17)

Substituting (17) into (16), we get the following characteristic equation

(1—a+b)9?+(2b—a)d+b=0, (18)
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9 — (a—2b)+(—1)"\/(a—2b)>—4b(1—a-+b)
= 2(1—a+b)

_a—2b+(—1)"Va?—4ab+4b2—4b+4ab—4b2 (19)
- 2(1—a+b)

a—2b+(—1)"v/a?—4b _
2(1—a+b) s k=12

From this we get

2-2a+2b+a—2b+ (-1)"Va—4b  2—a+ (-1)"Va? —4b

U+ 1= k= 1,2 (2
i 2(1 — a+b) 2(1 — a + b) ’ 2 (20)
Thus the general solution to equation (16) has the form
Zn =C1(01 +1)" + Co (9, + 1)", (21)

where C1 and Cy are arbitrary constants. Then we will find the general solution of inhomoge-
neous equation (12) using the method of variation of constants, i.e. consider

Zp = Cr1n(U1 + )" + Con (V2 + 1)™. (22)
Then , , )
2 = CO((01+ 1))+ CL (91 + 1) + Crnd1 (91 + 1)+
(23)
+CW9y (099 + 1) + CD (g + 1)™ + Copa (9 + 1)™.
Assuming that
(01 + 1) + ) (02 + )" =0, (24)
and differentiating (23) once more and substituting into (12) we get
(1—a+b) [052191(191 +1)™ 4 G193 (91 + 1)
+CS 05 (02 + 1) 4 Cop3(92 + 1)) +
+(20 — a) [C1pV1 (V1 + 1) + CopV2(P2 + 1 )] +
+0[Cin(V1 +1)" + Con( Y2+ 1)"] = gn.
Thus, we get the following systems of algebraic equations:
CSn) (191 + 1)n+1 + Cé;z (792 + 1)n+1 =0 (25)
Clad (W1 + 1) 4 C5 )0 (0 + 1)1 = o,
(191 4 1)n+l (192 + 1)n+l
Wn — =
% (191_1_)71—&-1 192(192 + 1)” +1 (26)

= (’192 — 291)(’[91 + 1)n+1(,,92 + 1)n+1 75 0.

Under conditions (26) according to Cramer’s rule, from system (25) we get

ch_ L]0 @k )™ (e )™ ge =g+ )T
W |l P2V 4+ 1) Wn l1—a+b (1—a+b)(s—1’
C(l) _ i (1 + 1)n+1 0 _ (V1 + 1)n+1 Gn _ gn<192 + 1)7N71
MW, | i+ )M gy (U2 =) (W2 +1)"H1—a+b (1—a+b)(¥2— )
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or taking into account (3), we have

—gn(ﬁl + 1)—n—1
(1—a+b)(92 — 1)’

gn(792 + 1)—n—1
(1 —(I+b)(192 —191).

Cint1 — Cin =

Cont1 — Cop, =

From the last after summing over n, we have

n—1
A gr(¥1 + 1)1

n—1
B gk(ﬂg + 1)_k_1
Can _02”;:0 (1—a+b)(9y—v1)

Substituting (27) into (22) for inhomogeneous equation (12), we get the following general

solution
n—1

791+1)n 1-k

Z = Cro(91 + 1) + Con( + 1)" kZO = atd) (0 =00
n—1
' 2
Z 1—a+b 02—791)% .

0

Thus, for fundamental solution of (12), we get the following expression

(192+1)n k—1 (191+1)n k—1
(1—a+b)(¥2—01) ’

; k <mn,
0, k>n.

Lk = Lp—k = { (29)

After substituting (29) into the left part of (12) we get

0k #mn,

1 k=n, (30)

Q-—a+0)2" +@—-a)2), +bZ, 4 = {

i.e.

U Zp—k = Onk, (31)

where 6, is the Kronecker symbol.
Now, based on fundamental solution (29), we form expression (11).

N-1
/ WnlZn—t = (Yn—k-12Z8-1)") = (Y0 Zn—1) O+
0
+(a —2) {yN—lz](V),l,k — Yo Z;i )] +alyn—1ZNn-1-k — Yo Z—k) +

N-1 " ’ N-1 ~
+/ v [(1=a+ D)2 + 2 — )20 +b 2, 4] = / ol Zni.
0 0
Considering that 7, = 0 when n — k < 1, we have

YNZN—k — YN-1ZN—-1—k + (@ = 2)ynN—1 [ZN—-k — IN—1-k] +
(32)
+ayn—1ZN-1-k — 0 fn|:Z()k+2Z()k+Zn Kl =—y, k=0N-2

Taking into account boundary condition (2) in (32), we obtain

Y = Yo ZNn— — ByiZn_k—1+ (a —2)By1(ZN—k — ZN—k—1)+
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N—1
+aBy1 ZN—k—1 + / In(Zn—kro —2Zn ki1 + Znk +2Zn ki1 — 2Zn—k + Zn—k)
0

or
N-1
yr = [ayo + (a —2)B y1] Zn—k + [a By1 — (a —2)Byr — B y1] ZN_k—1 +/ fnZn—k+2
0

or

N—2
yr =layo+ (a—2)B ] Zn—k + Py1ZN—k—1 + Z fnZn—tks2, k=0,N—2.

n=0
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